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Abstract

The second part of this research is to present the field-dependant dynamic property of a sandwich beam with con-
ductive skins and a soft core composed of a magnetorheological elastomer (MRE) part and two non-MRE parts. The
MRE part of the core is configured to operate in shear mode and hence the dynamic properties of the sandwich beam
can be controlled by magnetic fields due to the field-dependant shear modulus of MRE material. According to the ana-
lytical solution for the magnetoelastic loads applied to conductive deformable bodies presented in the first part, the
model of the proposed sandwich beam is developed via Hamilton principle. A simply supported MRE-based sandwich
beam excited by a vertical force distributed uniformly in a narrow region around the center of the beam is simulated.
The anti-resonant frequencies and the resonant frequencies are found to change with the applied magnetic field up to
30%. The procedure to seek the optimal length of MRE part is also presented. Although MRE is a soft material with
shear modulus about 0.4 Mpa, this research indicates that the sandwich configuration can well utilize the controllable
property of MRE to design applicable smart devices with controllable stiffness.
© 2005 Published by Elsevier Ltd.
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1. Introduction

Owing to regular chain-like structures formed by ferrous particles and embedded in rubber matrix, mag-
netorheological elastomer (MRE) is a composite with field-dependant modulus. MRE is cured under strong
magnetic fields and hence the formed chain-like structures are orientated along the magnetic field. When
magnetic fields are applied parallel to such chain-like structures in application, the bulk shear modulus
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Nomenclature

T kinetic energy

U strain energy

14 work due to external forces and the magnetoelastic loads acting on the skins

) variation operator

p] (j=t, b, c) mass density of the top (t) and bottom (b) skins and the core (c), respectively

u; (j=t, b, c) longitudinal displacement in the top (t) and bottom (b) skins and the core (c)
wj (j=t, b, c) transverse displacement in the top (t) and bottom (b) skins and the core (c)
V;(j=t,b,c) volume of the top (t) and bottom (b) skins and the core (c)
u(,] (j=t, b) horizontal displacement of the mid-line of the top (t) and bottom (b) skins
W, (j=1,b) vertical displacement of the mid-line of the top (t) and bottom (b) skins
Z; (j=t,b) half thickness of the skins
D, (j=t1,b) thickness of the skins
0y (j=1,b,c) longitudinal normal stress in the top (t) and bottom (b) skins and the core (c)
ex (j=t, b, c) longitudinal strain in the top (t) and bottom (b) skins and the core (c)
Tyze shear stress in the core
T abbreviation of 7..., see Eq. (21)
Vxze shear strain in the core
g; (j =t, b) vertical external distributed forces at the top (t) and bottom (b) skins
n; (j =t,b) horizontal external distributed forces at the top (t) and bottom (b) skins
m; (j =t, b) moments external distributed loads at the top (t) and bottom (b) skins
f° (j=t, b) Lorenz body force inside the top (t) and bottom (b) skins
By modulus of the magnet induction of applied magnetic fields perpendicular to sandwich beams
Lo magnetic permeability in free spaces
Ue; (j =t,b) permeability of the top (t) and bottom (b) skins
n}‘"r (j =t,b) equivalent Horizontal force induced by Lorenz body force at the top (t) and bottom (b)
skins
]L"r (j =t,b) equivalent moments induced by Lorenz body force at the top (t) and bottom (b) skins
J (j =t,b) surface stress on the top (t) and bottom (b) skins caused by Maxwell’s stress jump

m}“ equivalent moments induced by Maxwell’s stress jump at the top (t) and bottom (b) skins

n equivalent horizontal force induced by magnetoelastic loads at the top (t) and bottom (b)
skins. See Eq. (13a)

m’f equivalent moments induced by magnetoelastic loads at the top (t) and bottom (b) skins. See
Eq. (13b)

H width of the sandwich beam

L length of the sandwich beam

c thickness of the core

S; (j=t,b,c) cross-sectional area of the top (t) and bottom (b) skins and the core (c)

N, (j=t,b) average normal stress on the top (t) and bottom (b) skins. See Eq. (20)

M,,; (j=t,b) average stress couples on the top (t) and bottom (b) skins. See Eq. (20)

G, transverse shear modulus of the core

E;(j=t,b,c) Young’s modulus of the top (t) and bottom (b) skins and the core (c)

I; (j=t,b) flexure moment of the top (t) and bottom (b) skins and the core (c)

kap apparent stiffness of a simply supported sandwich beam. See Eq. (42)
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J relative change of the apparent stiffness, k,,, between zero-field shear modulus and maximum
field-induced shear modulus of the MRE core

X unit vector of x coordinate

w angular frequency

ymre relative change of the shear modulus of the MRE part of the core induced by magnetic fields

*Remarks: (), and ()" denote the first order derivative and second order derivative with respect to
time respectively; () . denotes the partial derivative with respect to x coordinate; the super-
script “A” indicates the Fourier transform with respect to time

of MRE can be changed up to 60% of the zero-field shear modulus due to the magnetic interaction between
the particles inside the chains (Zhou, 2003). Due to its stable, reversible and rapid responded field-control-
lable characteristics, MRE is a much more promising material in developing semi-active devices.

MRE was introduced by Shiga (Shiga et al., 1995) and Jolly (Jolly et al., 1996) nearly 10 years ago when
many research efforts were still paid on MRF and MRF-based damping devices. Previous researches on
MRE were focused on its field-dependant shear modulus heavily. The field-dependant shear modulus
was investigated experimentally by shearing MRE (Jolly et al., 1996; Ginder et al., 1999) on material test
system or measuring the vibration of sandwich cantilever (Demchuk and Kuzmin, 2002). Employing dipole
model and finite element method, Davis (1999) reported the maximum change of the dynamic shear mod-
ulus of MRE is about 50% which occurs when the volume fraction is 27%. This conclusion was verified
experimentally by Zhou through free vibration experiment (Zhou, 2003). Zhou further reported that such
field-dependant shear modulus became null when the deformation frequency was beyond several hundreds
Hertz (Zhou, 2004). Devices utilizing such field-dependant shear property were also introduced (Badolato
and Pawlowski, 2003; Zhou and Wang, 2005, in press). Recently, the relaxation behavior (Schlotter et al.,
2002; Zhou and Jiang, 2004) and dynamic tension behavior (Zhou and Li, 2003) of MRE were also re-
ported. Though MRE exhibits controllable and stable properties, it is rather soft and its zero-field shear
modulus is as lower as 0.4 MPa (Davis, 1999). This does hinder its application since the area of the mag-
netic poles cannot be manufactured very large. Sandwich configuration provides an alternative to apply the
field-controllable property of MRE to engineering applications.

Sandwich beams have been in use for many years in industries, especially in aerospace engineering, due
to their high strength—-mass ratio (Librescu and Hause, 2000). A typical construction of a beam consists of
two skins and a core. Numerous references can be found in literature covering the debonding problem (Fro-
stig, 1992), buckling problem (Librescu and Hause, 2000), and dynamic mechanical problem of curved
(Bozhevolnaya and Frostig, 1997) or non-curved beams (Frostig and Baruch, 1994). Many works proved
that the transverse flexibility of the core affects the overall behaviors of sandwich beams, such as stresses
and displacements (Librescu and Hause, 2000; Frostig and Baruch, 1994). Theories describing the bulk
property of sandwich beams based on different assumptions of displacement fields inside cores have been
developed. In the references (Frostig, 1992; Frostig and Baruch, 1994), those theories were reviewed and
compared. Among these theories, the high-order theory developed by Frostig (Frostig and Baruch,
1994) was successful for the analysis of such sandwich beams with transversely flexible cores. Thus, this the-
ory will be used for the present analysis.

As the further approach of the investigation on MRE-based sandwich beam with non-conductive skins
(Zhou and Wang, 2005, in press), this article provides a fundamental analysis on how magnetic fields change
the dynamic property of the MRE-based sandwich beam with conductive skins. Different from the case of
non-conductive skins, the magnetic field will both change the mechanical property of MRE and generate
magnetoelastic loads subjected to the skins. Based on the analytical solution for the magnetoelastic loads
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applied to conductive deformable bodies presented in the first part, the mathematical formulation and the
boundary conditions for a general case will be presented. The shear modulus of the core is assumed to be
a distributing function along the longitudinal direction since the MRE part of the core is affected by the mag-
netic field while the non-MRE parts are not. Numerical results for a simply supported beam are presented to
study the field-controllable dynamic property of the proposed sandwich beam excited by a vertical force at
the center of the beam. The procedure to seek the optimal length of the MRE part to yield maximum con-
trollable range of the bulk dynamic flexure rigidity is also conducted. Since skins strengthen bulk flexure
rigidities of sandwich beams, this sandwich configuration would lead to applicable semi-active devices by
taking the advantage of field-dependant property of MRE.

2. Mathematical formulation

The proposed sandwich beam consists of two conductive skins and a soft core, which is composed of an
MRE part and two non-MRE parts. The MRE part is configured with the chain-like structures embedded
in the material perpendicular to the skins. The applied magnetic field is parallel to such chain-like structures
and is perpendicular to the skins. Under dynamic deformations, motion-induced eddy current will be gen-
erated on the skins. Thus, the magnetic field near the skins will be disturbed and magnetoelastic loads will
be applied to the skins. As a result, the bulk dynamic flexure rigidity is affected by the applied magnetic field
through the field-dependant shear modulus of the MRE part of the core and the magnetomechanical cou-
pling mechanism of the conductive skins. In our analysis, we assume the field-disturbance due to motion-
induced eddy current on skins is extremely small compared with the applied magnetic field. That is the
transverse shear modulus of the MRE part is only a function of the applied magnetic field and the
MRE part. On the other hand, due to the bulk magnetic permeability of MRE is not very high, the mo-
tion-induced eddy current on the skins is only associated with the applied magnetic field. In summary,
the above two assumptions indicates the field-related mechanical property of the skins and the MRE part
can be analyzed separately. It should be mentioned the shear modulus of MRE changes linearly with the
strength of the magnetic field till magnetic saturation occurs (Zhou, 2003, 2004). Thus, in the following
analysis, only the relative change of the shear modulus of the MRE part is used to denote the effect of mag-
netic fields on the core.

The mathematical formulation consists of the derivation of the governing field equations of motion and
the corresponding boundary conditions for conductive skins and flexible core. They are derived through the
Hamilton principle by seeking the extremum of the Lagrangian that consists of the kinetic, strain energy
and the work caused by the external force and magnetoelastic loads. Figs. 1 and 2 present the illustration
of the proposed sandwich beams and the geometry for analysis. The Lagrangian expression for the sand-
wich is given as

/IZS(—TJr U+ V)t = 0 0

where T is the kinetic energy, U is the strain energy, V is the work due to external forces and the magneto-
elastic loads acting on the skins, 7 is the time coordinate between ¢, and #,, and d is the variation operator.

2.1. The kinetic energy

The first variation of the kinetic energy for sandwich beam is expressed as

57 = [ (patd + povdni)do+ [ (ol + poout)do-+ [ (paBul + ponl)de )

Vp Ve
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Fig. 1. Illustration of the proposed sandwich beam.
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Fig. 2. Geometry of the proposed sandwich beam.

where p; (j=t, b, c) is the mass density of the top and bottom skins and the core, respectively; u;, w;
(j=t, b, c) are the displacement in longitudinal and vertical direction, respectively, of the skins and the
core; the prime denotes the first derivative respect to the time coordinate; V; (j =t, b, ¢) is the volume of
the top and bottom skins and the core.

After conducting integration by parts with respect to the time coordinate and employing homogeneous
conditions for the displacement and velocity at ¢ = ¢y, t,, the following relation for the first variation of the
kinetic energy is obtained

%) t
/ STdt:—/ {/ (ptu{/Sut—i-plw’t’Bwt)dv—I—/(pbugBub—&—pbwngb)dv—k/(pcué’5uc+pcwg8wc)dv dr
I3 H Ut Up V¢
3)

where () denotes the second derivative with respect to time.
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Based on Frostig’s high-order theory, the soft core is considered as a medium which transfers its inertial
loads to the skins rather than resisting them by itself. This consideration indicates the wave-like behavior in
the vertical and horizontal directions of the core is prevented. Thus, the acceleration and the velocity in the
vertical direction of the core are assumed to have the shape of the static deformation fields. The static dis-
placements field throughout the height of the core is nonlinear, especially in the vicinity of concentrated
loads and supports. However, under distributed loads, these nonlinearities are so small that a linear distri-
bution can be used instead without loss of accuracy (Frostig and Baruch, 1994). It should be emphasized
that this simplification is employed only for the inertial participation effects of the core. Thus, the displace-
ment inside the core follows the following equations:

wo— w2z
Wg(xvzv t) = M—F Wgt (48')

obx otx

{u;’b + Zpwly  —ul + Zw!, }z
) e + M:),t — ZtW” (4b)

1"
U, ()C,Z, t otx

C

where u,; and w,; (j = t, b) are the horizontal and vertical displacement of the mid-line, respectively, of the
skins; Z; (j =t, b) is the half thickness of the skins; () , denotes a derivative with respect to x.

2.2. The strain energy

The first variation of the strain energy in terms of stress and strain is given as
SU = / Jxx185xxt dU +/ axxbsexxb dU +/ (O-zzcagzzc + 2szC8yxzc)dU (5)
vt Uy Ut

where o.,; and ¢,,; (j = t, b, ¢) are the longitudinal normal stress and strains, respectively; 7... and y,.. are
the shear stress and shear strain in the core.
The kinematics relations for the skins, assuming small linear deformations, are

& = Uojx — ZWojmx (J =1,D) (6)

where z; (j = t, b) is the local coordinate of the skins.
The kinematics relations for the core are

Ezc = Wez (73)
1
Vize = B (e + Wex) (7b)

where (). denotes a derivative with respect to z.
2.3. The work by external forces

The first variation of the external energy can be expressed as
L
oV = — / (5w + nduy + mdwy, + q, 0wy + npduy, + mydwy, , )dx (8)
0

where ¢;, n; and m; (j = t, b) are the vertical, horizontal and moments external distributed loads respectively
at the top (t) and bottom (b) skins.



G.Y. Zhou, Q. Wang | International Journal of Solids and Structures 43 (2006) 5403-5420 5409
2.4. The magnetoelastic loads on the conductive skins

The magnetoelastic loads, referring to the Lorenz body force and the surface force caused by the Max-
well’s stress jump on the surface of the conductive skins, will be subjected to the vibrating conductive skins
due to the motion-induced eddy current. When the vibrating skin is exposed to the applied magnetic field
perpendicularly, the Lorenz body force and the surface force caused by the jumps of the Maxwell’s stress
tensor on the surface have been obtained analytically in the first part of the research. The results will be
listed below.

For a thin-beam immersed in an applied steady magnetic field along the thickness direction, the induced
magnetic field inside the perfectly electro-conductive medium is

. B?
£ = = (Uoox = 2 Wojuoee ) )

ej
where f° (j = t, b) is the Lorenz body force, U (j = t, b) is the permeability of the skins, and By is the mod-
ulus of the magnetic induction of the applied magnetic field, which is perpendicular to the sandwich beam.

The Lorenz body force will induce horizontal force and moments distributed loads as follows:

2
nl_mr — BOHDj

Upjax (10a)
! .uej !
BH D}
Lor __ 0 J
mj - e EW(’j,xx)( (IOb)
The stress on the surface of the beam, which is caused by the jumps of Maxwell’s stress tensor, is given as
. B? s D, X
=0 o'x__j o'rrln— 0jx 11
= u (ZInﬁuj' 2m " L—x+wj’> (11)

where ¢”/ (j =t,b) is the shear stress on the upper and lower skin respectively.
The surface force will induce moments distributed loads, which are

B2HD; D;
m}\/[ax _ 20 J n _J Wojxx In
Ho 21n T

x
Wy, 12
— " Wk (12)

x Mo 75 L

L—x

Thus, the magnetoelastic loads applied to the conductive beam will be equivalent to the following horizon-
tal force distribution and the distributed moments are expressed as

B3HD;

J J
He ]

n" = plor —

uajxx ( 1 33.)

_ ByHD, n_ D
- XU m
Ho ZlnL
— X

53 D}
- Ewojﬁxxx (13b)

Wojxx lnm + Wojx

:uej

2.5. The governing equation

The governing equations are derived by substituting the above Egs. (2-13) into Eq. (1). After conducting
integration by parts with respect to x and z and some mathematical operations and algebraic manipula-
tions, the governing equations are obtained as
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Seput!! Scpu’ DiScp.wy,
S . cFc ob Sc cFec%ot otx
ot g T SePena £ 3 6
+ pSad), —n' —ng — H1(0) = Ny = 0 (14)
Septtly  SepDowyy, . Scpoul D

Sugy p3 ob 4 6b bx 4 p6 ot Scpcl—zthu

+ prbqu - ngl —np + H‘szc(c) - Nxxb,x =0 (15)

D DDy, T D}
SWOt: SCpC 1:; :)lb¥+SCpC 24 bev—i_SCpc 6[’ _(Scpc—i_ptSt) 12 gtxv
S p W
+ ( °3 ¢4 ptSt> wl + Scpc?“b =g, +m 4 my,
Dy

- HGZZC(O) - HszC,x(O) 7 - Mxxt,xx = 0 (16)

Sep Dyl Dy Dy, DyD,
SWOb : T - (Scpc + prb) 12 obxr - EScpCuZt,x + 24 SCpCWZt,xx

SC c SC cwo m
+ (Tp + prb> W::b + % — 4y + mbﬁx + My x
Dy

+ Hazzc(c) - Hszc,x (C) ? - Mxxb,xx = 0 (17)
6M}c : Ozzcz + Txzex = 0 (18)
Oue : Tz =0 (19)

where H is the width of the sandwich beam, D; (j = t, b) are the thickness of the top and bottom skin; S;
(j =t, b, ¢) are the cross-sectional area of the top and bottom skins and the core respectively; N.,; and M,,;
(=1, b) are the average normal stress and stress couples defined by

Zj zj
Ny = H/ On;dz and M, = H/ Oyyyzdz (20)
—Zj —zj

The shear stress in the core, from Eq. (19), is uniform through the height of the core and is only the function
of x coordinate. Thus, 7 is just a function of x and can be expressed by

7(x,z) = t(x) (21)
The constitutive equations of the core are
7(x) = GeYye and e = EcWe (22)

where G, and E. are the shear modulus and Young’s modulus of the core respectively.

It should be stressed for MRE material, the transverse shear modulus is a function of applied magnetic

field when the deformation frequency is under 300 Hz (Zhou, 2004) while the Young’s modulus changes

slightly in such frequency range (Zhou and Li, 2003). Since we only consider the case of deformation fre-

quency under 300 Hz, G, is a function of x while E, is a constant.

Through Eqs. (18) and (22), the normal stress inside the core can be obtained as

oz = 0) = Ec(Wob — Wor) + 5. (23)

c 2

EC (Wob - Wat) Tx

O(z=1¢) = : > c
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The constitutive of the skins leads to

Nuj = E;Sjlhojx (25)
Mxxj = _E[ W{)j XX (26)

where E;/; = HE,> ;15 (= t, b) is the flexural rigidities.

By substltutlng Egs. (23)(26) into Egs. (14)—(17), the dynamic governing equations of a sandwich beam
with soft core can be expressed in terms of the vertical deformations, w,, and w,y, the horizontal deforma-
tions, u,, and u,,, and the shear stress in the core, . Thus, there are four linear differential equations but
with five independent functions. The additional equation, derived from Egs. (18) and (19) by using Eq. (22),
reads

T TwC ¢+ Dy ¢+ Dy

G T 12E. T T 2 M

The solution for a simply supported sandwich beam governed by Eqs. (14)—(17) and (27) will be presented
in the next subsection.

Wotx — Uob + Uy = 0 (27)

2.6. Solution for simply supported beam

Applying Fourier transform to the above five equations yields

N 6!)2 <Scpc + ptS(> LAI,,[ o wZSCpcilob _Hz + 0)2 DlSCpcwal,x

3 6 6
D ~ ~ ~ ~m
- CO 12 Scpcwob,x - ElSluot,xx =n+ n; (28)
Scp iy Sepe . . Dy,
_wz%_uﬂ(Terprb)uabjLerw Scpclzwm
ScPDpWob x . . o
— 602 % — EbSbunb,xx = Ny —+ I’lb (29)
®*Sep E @*Sep E, Dyily, D
- e S Ao e H Wob — 2Sc e 2Sc _le X
( 3 TORS c>w‘ ( 6 c> b P76 Peqptor
c+D. . D} DDy o m
- tHT,x + (Scpc + ptSl) I_Qt’WoLxx - wZSCpc £4bwobxx +Et[lwol XXXX qt - mlﬁx - mt,x (30)
2SePe Sepe E.\ . ScpDby . D .
- ( 6p +H ) - ( ? C3’0 +w prb - f) Wob + wz%uob,x + wzl_;)Scpcuat,x
c+Dy, DyD ) Dy o
—-H 2 bf,x - w2 54 lSCpcwot,xx“sz(Scpg +prb) lzwob Xx +Eb1bwobxxxx gy — My — Mpx (31)
. c. c+D, c+Dy . A,
Upt — Uy +—=1— Wo,x_—wo 4x_—T<xx:0 32
TG, 2 2 T 2E, (32)

where the superscript “A” denotes the Fourier transformed function and w is the angular frequency.
The boundary conditions for a simply supported beam are listed below. The vertical displacement of the
skins at the two ends should be zero, which yields

Woi(x=0)=0 (33a)
and
Wo(x=L) =0 (33b)
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The flexural torque at the two ends should be balanced by the moments induced by magnetoelastic loads.
From Eq. (13b), the boundary condition at the two ends is thus derived

(1 608 | x >a2w0, 128 ow, B Oy (34

n =
uymE ,-DJZ. L—x) ox* pkE /-DJZ. o p ko

(rewrite it as “because’” cannot me a main sentence) To satisfy the above equation, the following conditions
must be enforced:

Woje(x = 0) = 0 (35a)
and
wqi,xx(x = L) = 0 (36b)

And the average normal stresses of the skin at the two ends should be balanced by the Lorenz force, which
yields

N BIHD,

uoj,x(x - O) - ,uejE ua/ vv(x - 0) (373)
and

. ByHD;

uoj,x(x - L) ,u”E ua] xx(x — L) (38b)

Since By < 1T, the coefficient of B o " would be extremely small such that the right-hand-side of the above

"/

two equations can be neglected. Thus, we have

f1yjx(x =0) =0 (39a)

and
fpx(x=L)=0 (39b)

From Egs. (30) and (32), the boundary of the conductive skins exposed to (do not understand) field per-
pendicularly can be replaced by that of a pure (simply is one word) supported beam.
The normal stresses on the side surfaces at x =0 and x = L should be zero, which yields

T (x=0)=0 (40a)
and
t(x=L)=0 (40Db)

By the boundary condition of Egs. (33), (35), and (39), series expression for the displacement distribution of
the sandwich beam with simply supported boundary conditions at the skins can be expressed as follows:

it = Z ae cos — (41a)

Uy = Za”b° cos—x (41b)

Wot = Z a;® sin% (41c)

k=1
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. Zoo wbs o KX

Wop = Z akb SlnT (41d)

T= EOO a”coskﬂ (41e)
= B i

where @) (j = utc, ubc, wts, wbs, 7c) are coefficients.
The coefficients in Eqs. (41a)—(41e) can be obtained through Egs. (28)—(32) by Galerkin method.

3. Numerical simulations

In the following numerical simulations, the dimensions and material properties of the sandwich beam are
given as follows. The width of the beam, H, is set to be 0.1L; the thicknesses of the top and bottom skins, D;
and Dy, are all set to be 0.1 mm; The Young’s modulus of the skins, E; and E, are 72 GPa; the densities of
the skins, p, and py,, are 2700 kg/m?; the zero-field shear modulus of MRE and the shear modulus of the
non-MRE soft core are 0.388 MPa; the shear modulus of MRE is assumed to be changed up to 60% of
zero-field value by the applied magnetic field, which follows the material parameter of MRE in Davis’ study
(Davis, 1999); the Young’s modulus of the MRE part, which is assumed to be unchanged with the applied
magnetic field (Zhou and Li, 2003), and the non-MRE part are set to be 1.7 MPa; the density of the core,
including MRE part and the non-MRE part, is 1100 kg/m?; the thickness of the core is 2 mm. The simu-
lations will be focused in the frequency rang of 0 Hz < 52 < 300 Hz because the field-depended character-
istic of shear modulus of MRE vanishes as frequency goes higher (Zhou, 2004).

All the external forces are set to be zero except the vertical force subjected to the top skin, ¢,. ¢, is further
assumed to be a harmonic force distributing uniformly in the interval of £ — ﬁ <x<i+ 20LW Thus, the
displacements and the shear stress in the core can be obtained through the above analysis.

The first 20 terms in series expression of Egs. (32) and (33) are employed in the simulation. The apparent
stiffness at x = %, which is the center of external force distribution, can be defined by

F(o)

EACH)

kap (VoMRE, ©) = (42)

where F (w) is the Fourier transform of the applied vertical force; ygmrE 1 the magnetic-induced relative
change of the shear modulus of MRE core located at x; < x < x,. It should be stressed k,p, is the only
parameter used in our study to reveal the controllability of the proposed sandwich beam.

The maximum value of ygugE is 0.6 occurring at the magnetic saturation. To simplify our simulation,
the magnetic saturation inside the MRE is assumed to occur at By =1 T. This assumption is reasonable
since it agrees well with the material parameter of MRE used in our previous experimental works (Zhou,
2003, 2004). Before magnetic saturation, By is found to be associated with ygmre linearly (Zhou, 2003).
Thus, ygmrE can be used to denote the magnetic field induction hereafter.

Fig. 3 presents the curves of logjok., against 5> at different ypre, Wwhen L = 15 cm and the core are as-
sumed to be composed of MRE completely. The three curves are associated with yyrg =0, yMrg = 0.3 and
yMmrE = 0.6 respectively. On the curves, the peaks denote the anti-resonant frequencies, where the induced
vertical displacement at x = £ approaches zero, and the lower-most points denote the resonant frequencies,
where the induced vertical displacement at x = £ goes toward infinite. In other words, the stiffness of the
beam at x = % is much higher at anti-resonant frequency and is much lower at resonant frequency. From
the curves, the anti-resonant frequencies and the resonant frequencies both increase with the shear modulus
of MRE core. The maximum change of the anti-resonant frequencies and the resonant frequencies is above
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Fig. 3. The apparent stiffness k,, at different shear modulus of MRE for the beam with L =15 cm and ¢ =2 mm.

30%. This characteristic indicates the increase of the applied magnetic field will increase the flexure rigidity
of the sandwich beam.

The magnetoelastic loads and the change of the shear modulus of MRE core both affect the dynamic
property of the sandwich beam. The following simulation is to reveal the major effect. The size of the sand-
wich beam is still the same with the above simulation. In Fig. 4, the line marked by pentagon represents the
curve of logjok,p, at By =1 T when the magnetoelastic loads are considered; while the line marked by circle
represents the curve of logok,, at By =1T when the magnetoelastic loads are not considered. From the
two curves, it can be seen that the effect of the magnetoelastic loads on the change of the dynamic property
of the sandwich beam is very small. Thus, the change of the shear modulus of MRE is the major effect on
the increase of the flexure rigidity of the sandwich beam.

Now, the effect of the length of the MRE core on the controllable dynamic property of the sandwich
beam will be addressed. The MRE core is centered at the mid-point of the beam because of the symmetry
of the configuration. To seek the effect of the length of the MRE core, the flowing index is defined:

400 2

J(x,. le ,L) _Jo [kapfi)o.6, ) — kapgo, )] dw (43)
Jo = [kap(0, )] "do

J denotes the relative change of the apparent stiffness, k,,, between zero-field shear modulus and maximum

field-induced shear modulus of MRE core. This index is a function of the length of the MRE core and the

length of the beam and the maximum of this index presents the maximum of the controllability. Thus, this
index can be used to reveal the effect of the length of the MRE core on the controllability of the sandwich
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Fig. 4. The effect of the magnetoelastic loads for the proposed sandwich beam with L =15cm and ¢ =2 mm when By=1T: (a)
Panorama; (b) zoom of part A.
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Fig. 5. The MRE-induced relative change of the apparent stiffness curve against the length of the core (L = 15 cm and ¢ =2 mm).

beam. In Fig. 5, the curve of J against L —*7* when L = 15 cm is given. The fluctuation of the simulation
results is caused by only 20 terms in series expression used in Galerkin method. Thus, the simulation results
are fitted by a fourth order polynomial. It can be seen J decreases monotonously with L —**.. Thus, the
maximum controllability occurs when the MRE core composes the soft core completely. The cases of
L=10cm and L =12 cm are all simulated and the curves of J are all with the above characteristic.

With the above discussion on the effect of the length of MRE core on the controllable property of the
proposed sandwich beam, the soft core of the sandwich beam is assumed to be composed of MRE com-
pletely in the following simulations. Figs. 6(a) and 7(a) present the distribution of log,,k,, in the
Y6MRE ~ 5> domain for the sandwich beam with L =10 cm and L = 15cm respectively. Figs. 6(b) and
7(b) are the corresponding top-views. From the figures, both the anti-resonant frequencies (see the lines
marked by the symbol without subscription) and resonant frequencies (see the lines marked by the symbol
with the subscription “b”’) increase with yyrg. These results reaffirm the increase of the magnetic field will
increase the flexure rigidity of the sandwich beam.

4. Conclusions

The dynamic property of a sandwich beam, composed of conductive skins and soft core with both MRE
and non-MRE parts, is studied. Due to the controllable shear property of the core and the magnetoelastic
loads on the conductive skins, the dynamic performance of the sandwich beam and the stiffness of the beam
will be enhanced by the applied magnetic field. According to the analytical solution on magnetoelastic loads
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Fig. 6. The distribution of apparent stiffness in the ygyure ~ 5= domain for the beam with L = 10 cm: (a) the 3D distribution; (b) the
top-view.
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Fig. 7. The distribution of apparent stiffness in the ygugrg ~ 3= domain for the beam with L =15 cm: (a) the 3D distribution; (b) the

top-view.
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of a thin vibrating beam, the model based on Hamilton principle for the proposed sandwich beam is pre-
sented and numerical simulations on a simply supported beam are conducted. In the simulations, the ver-
tical external force on the upper skin distributed in an extremely narrow region around the center of the
beam is examined. The apparent stiffness at the center of the beam is utilized to reveal the controllability
of the proposed sandwich beam. From simulations, the following conclusions for the beam have been
found:

1. For the sandwich beam with high length-thickness ratio, the highest controllability of the sandwich beam
occurs when the core is composed of MRE completely.

2. The flexure rigidity of the MRE-based sandwich beam increases with the applied magnetic field.

3. The change of the dynamic property of the sandwich beam is mainly caused by the change of the shear
modulus of MRE.

4. The resonant frequencies and anti-resonant frequencies increase with the applied magnetic field up to
30% before magnetic saturation occurs.

5. For the sandwich beam with skins thicker than 0.1 mm, such as the cases in our simulation, the field-
induced change of the dynamic property is mainly caused by the field-dependant shear modulus of
MRE.

The above conclusions reveal that the proposed sandwich beam exhibits promising controllable
property. Since the bulk stiffness of the sandwich can be widely increased by the applied magnetic field,
the proposed sandwich beam holds potentials for developing applicable semi-active devices for vibration
control.
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